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8 For extending the depth of field, we analyze the result of superimposing several snapshots, which are
9 taken while changing the amount of focus error, at full pupil aperture. We unveil the use of a varifocal

10 lens for controlling the amount of focus error, without modifying either the lateral magnification or light
11 throughput. After recording a set of snapshots, we use suitable acquisition factors for shaping an optical
12 transfer function, which has reduced sensitivity to focus errors. © 2013 Optical Society of America

OCIS codes: 110.4850, 110.4100, 110.1758, 110.688, 110.6915, 070.7425.

13 1. Introduction

14 Several authors have described techniques for ex-
15 tending the depth of field of an optical system, which
16 works under noncoherent illumination. These tech-
17 niques usually have two stages. Typically, in the first
18 stage, one acquires a single image with an optical
19 system that employs a suitable preprocessing mask
20 [1–25]. At the second stage, the recorded pictures are
21 digitally postprocessed for obtaining the final image.
22 Heuristically speaking, these techniques reduce first
23 the influence of focus error on the modulation trans-
24 fer function (MTF). In this manner, the preprocessing
25 mask ensures that several planar scenes, located at
26 different depths of the object field, suffer from virtu-
27 ally the same amount of contrast reduction. Then, at
28 the postprocessing stage, the image contrast can be
29 simultaneously corrected for all the recorded scenes.
30 For reducing the impact of focus errors, it is con-
31 venient to keep in mind the criteria summarized
32 in Table 1. The columns of Table 1 are arranged as
33 follows. Along column 1, in line 1, we depict sche-
34 matically the classical technique of narrowing the in-
35 itial pupil aperture, with cutoff spatial frequency Ω,
36 to a pupil aperture with cutoff spatial frequency εΩ,
37 where 0 ≤ ε < 1. In line 2, we depict schematically

38the use of an obscure disk, on-axis, with radial spa-
39tial frequency εΩ. Along column 2, we write the ex-
40pressions for the light throughput as a function of
41ε. Along column 3, we write the Rayleigh tolerance
42to focus error.
43Next, we note in Table 2 that several proposals go
44far beyond Rayleigh tolerance criteria. For this type
45of applications, one uses rectangular apertures
46rather than circular apertures. And rather than us-
47ing the Rayleigh criteria, one uses criteria based on
48the MTF [26]. In Table 2, along line 1, we show the
49interferograms of a rectangular pupil, as we change
50the focus error coefficient. Along line 2, we display
51the PSF as focus error increases. And along lines 3
52and 4, we display the impact of focus error on two
53different types of images.
54Fifty years ago, Haeusler indicated the usefulness
55of superimposing several images, in the same photo-
56graphic plate, while moving the optical system [27].
57Furthermore, it has been indicated that it is useful to
58modulate the exposure time when taking several pic-
59tures [28].
60Here, our aim is to present a simple mathematical
61analysis that describes a low cost optical technique
62for extending the depth of field at full pupil aperture.
63In other words, based on idealized computer simula-
64tions and simple mathematical considerations, we
65explore the possibility of extending the depth of field
66by superimposing, with suitable weighting factors,
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67 several snapshots of the same input. Our proposal
68 does not include state-of-the-art techniques for
69 digital recording and processing. Furthermore, even
70 when our mathematical model takes into account the
71 presence of noise, our proposal does not dwell on
72 statistical optics.
73 In Section 2, we discuss a simple mathematical
74 model that describes the process of taking and aver-
75 aging several snapshots. At every snapshot, one
76 changes the axial separation between the input
77 plane and a fixed output plane. To that end, in Sec-
78 tion 3, we unveil a method that employs a varifocal
79 lens at the Fraunhofer plane of an optical processor
80 [29–32]. This novel method preserves unit magnifica-
81 tion in an optical processor, which remains at a fixed
82 position. Once the snapshots are recorded, we add
83 those pictures by using suitable weights. We show
84 that these weights are useful for engineering the op-
85 tical transfer function (OTF). In Section 4, we make

86some useful comparisons. We indicate that if in the
87Fourier domain the noise is a wide-sense stationary
88process, then the additive noise averages to a con-
89stant value. In Section 5, we illustrate our proposal
90by discussing two simple examples. If in the Fourier
91domain the noise is white, then we suggest using
92Hopkins tolerance formalism for setting a threshold
93value. Finally, in Section 6, we summarize our dis-
94cussion with some remarks on the advantages and
95limitations of our proposal.

962. Acquisition Function

97As depicted in Fig. 1, we consider a classical optical
98processor. We assume that the optical system has a
99rectangular pupil aperture. For the sake of clarity,

100our discussion is restricted to the one-dimensional
101case. The optical processor is represented by its
102OTF HQ!μ;W". We use the subindex Q for indicating
103that the complex amplitude transmittance of the pu-
104pil aperture is Q!μ". Consequently, the generalized
105pupil function is

P!μ;W2;0" # Q!μ" exp
!
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106In Eq. (1) W is a shorthand notation for describing
107the presence of the focus error coefficient measured
108in units of wavelengths. Except for a normalization
109factor, the OTF is equal to
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110For a particular value of W, the recorded irradiance
111distribution is

I!x;W" #
Z

∞

−∞
~I0!μ" ·HQ!μ;W"ei2πxμdμ$ jN!x;W"j2:

(3)

Table 1. Classical Trade-Offs for
Extending the Depth of Focus

T1:1

F1:1Fig. 1. Schematic diagram of an optical processor.

Table 2. Impact of Focus Error: (a) Interferograms of the Pupil
Function, (b) PSF, (c) Siemen Star Images, and (d) Lena Images

T2:1
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112 In Eq. (3) the function ~I0!μ" denotes the Fourier spec-
113 trum of the input irradiance distribution I0!x" The
114 function jN!x;W"j2 represents the presence of addi-
115 tive noise at the recording process for a given value
116 of W. Here it is relevant to recognize that W may be
117 treated as a random variable. Next, we define the fol-
118 lowing ensemble average over the random variable
119 W. That is,

hI!x"i #
Z

∞

−∞
g!W"I!x;W"dW: (4)

120 For performing an average, in Eq. (4), we employ a
121 weighting function g!W", which is here denoted as
122 the acquisition function. It represents the amplitude
123 weighting factor that one wishes to assign to a snap-
124 shot at a random value of W. Hence, heuristically
125 g!W" plays the role of a probability density function.
126 In what follows Eq. (5) puts into effect this viewpoint.
127 By using Eqs. (3) and (4) we have
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Z
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Z
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128 In Eq. (5) we denote as hjN!x"j2i the ensemble aver-
129 age of the additive noise N!x;W". In Appendix A,
130 we show that for a wide-sense stationary process,
131 hjN!x"j2i # N0, which is a constant. In Section 4,
132 we discuss the presence of white noise. Now, from
133 Eq. (5) we have

hI!x"i − hjN!x"j2i #
Z

∞

−∞
~I0!μ"hHQ!μ"iei2πxμdμ: (6)

134 It is apparent from Eq. (6) that in principle one can
135 recover the initial Fourier spectrum, ~I0!μ". To that
136 end, we recognize the need for having hHQ!μ"i ≠ 0.
137 If this requirement is met, then

~I0!μ" # &hHQ!μ"i'−1
Z
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(7)

138 Hence it is highly convenient to analyze closely the
139 expression for hHQ!μ"i. If we substitute Eq. (2) in
140 Eq. (5) we obtain
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141 In Eq. (8) we use the Fourier transform of the acquis-
142 ition function
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143Consequently, G!·" plays the role of a characteristic
144function. From Eqs. (6)–(9), we recognize that by
145properly selecting the acquisition function, g!W",
146one can achieve the two following goals. The function
147g!W" shapes the additive noise average hjN!x"j2i.
148And its Fourier transform G!·" engineers the average
149OTF. In this manner, one expects that our proposal
150will reduce the influence of additive noise and of fo-
151cus errors.
152In Fig. 2 we show the MTF of the following sys-
153tems: (a) a diffraction limited aperture, (b) an optical
154system with focus error coefficient W # 1, (c) the
155average MTF associated with Eq. (6) for Q!μ" # 1,
156and (d) an optical system with a cubic phase mask
157and a Gaussian apodizer [24]. It is apparent from
158Fig. 2 that for low frequencies, as well as for high
159frequencies, the averageMTF has higher values than
160theMTFassociated with a cubic phase mask working
161with a Gaussian apodizer. However, for the middle
162section of the spatial frequencies, the reverse is true.
163In the presence of white noise, it is convenient to con-
164sider minimum values of theMTF, as is depicted with
165a horizontal line in Fig. 2. In Section 4, we discuss the
166use of a threshold line in the MTF, for indicating that
167the values of the MTF should be above the influence
168of white noise. From Fig. 2, it is apparent that the
169methods labeled as (c) and (d) reach the threshold
170line at the same spatial frequency.

1713. Tuning the Amount of Focus Error

172As depicted in Fig. 3, we propose to use as spatial
173filter an Alvarez–Lohmann pair [29–32], which will
174transform a spherical wavefront into a plane wave-
175front, while preserving a fixed detection plane and
176a fixed magnification. In this manner, one can com-
177pensate the focus error associated with planes lo-
178cated outside the input plane. Or equivalently, one
179can select a given plane [out of a three-dimensional

F2:1Fig. 2. (Color online) MTFs of (a) diffraction limited aperture,
F2:2(b) focus error W # 1, (c) the average MTF, and (d) cubic phase
F2:3mask and a Gaussian apodizer.
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180 (3-D) input], which will be imaged, at the fixed out-
181 put plane, with a focus error coefficient equal to zero.
182 In mathematical terms, for an Alvarez–Lohmann
183 pair, the complex amplitude transmittance is
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184 In Eq. (10) we use a for denoting the optical path dif-
185 ference of the cubic phase elements forming the
186 Alvarez–Lohmann pair. We note that the complex
187 amplitude transmittance of one element is equal to
188 the complex conjugate of the other element [23].
189 The Greek letter η stands for a relative lateral dis-
190 placement (as a spatial frequency variable) between
191 the optical elements forming the pair. Hence, the
192 generalized pupil function of the optical processor is
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193 Or equivalently,
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194 From Eq. (12), one can recognize that by changing
195 the relative lateral displacement η one can control
196 the focal length of the pair. And then, one can com-
197 pensate a specific amount of focus error by setting

η #
"
Ω
3a

#
W: (13)

198Equivalently, one can select a certain plane, which is
199associated with a specific value of W. This particular
200plane is imaged (at the fixed detection plane) with
201zero focus error. By using this technique, one can con-
202trol the focus error coefficient without moving the op-
203tical system. By using simple paraxial, ray tracing
204formulas, one can show that the proposed device does
205not change the lateral magnification of the optical
206processor.

2074. Useful Comparisons

208Hauesler’s pioneering proposal is illustrated in Fig. 4.
209This proposal considers superimposing photographs
210on the same film for an infinite range of focus error
211coefficients. This ideal model is clearly limited by the
212film dynamic range. However, one can argue that this
213proposal generates a MTF that remains the same for
214all out-of-focus image planes. This is indeed the main
215characteristic of the preprocessingmasks, which gen-
216erate a MTF that does not vary for 0 ≤ W ≤ 3.
217Next, we use Fig. 5 for noting the following inter-
218esting analogy between modulated exposure time
219photography and our proposal. In Fig. 5 we show
220that the snapshots are taken at equidistant values
221in time. At a given time, say tn, the focus error
222coefficient is Wn, and the image irradiance distribu-
223tion is I!x;Wn". Then, the exposure of the n-fold
224snapshot is

E!x; tn;Wn" # M!tn"I!x;Wn": (14)

225In Eq. (14) we denote as M!tn" the relative factor de-
226scribing the time that the pupil aperture remains
227open recording the same frame I!x;Wn". Next, we
228consider that one selects the focus error coefficient,
229as a function of time, with the following relationship:

F3:1 Fig. 3. (Color online) Varifocal lens for controlling the focus error
F3:2 coefficient.

F4:1Fig. 4. (Color online) Hauesler proposal for extending the depth
F4:2of field.
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Wn # f !tn"; or equivalently tn # f −1!Wn": (15)

230 The last term in Eq. (15) indicates the inverse rela-
231 tionship that specifies the time as a function of the
232 specific value of Wn. Next, we substitute the last
233 term of Eq. (15) in Eq. (14) for obtaining

E!x; tn;Wn" # M!f −1!Wn""I!x;Wn" # g!Wn"I!x;Wn":
(16)

234 It is apparent from Eq. (16) that our proposed pro-
235 cedure can be linked to modulate exposure photogra-
236 phy, if the acquisition function g!W" is used for
237 describing the time that the pupil aperture remains
238 open when recording the frame I!x;Wn".
239 Now, we consider some tolerance criteria. By
240 closing down the pupil aperture, from a cutoff spatial
241 frequency Ω to the cutoff spatial εΩ (with 0 < ε ≤ 1)
242 the Strehl ratio is

s!W" #
I!x;W"
I!0; 0"

# sinc2!Wε2": (17)

243 Hence, one can use Eq. (17) for setting Rayleigh
244 tolerance condition s!W" ≥ 0.8, which leads to the
245 values in Table 1. The equivalent ratio when using
246 the MTF is

R!μ;W" #
jHQ!μ;W"j
jHQ!μ; 0"j

: (18)

247 The result in Eq. (18) was first proposed by Hopkins
248 [26] for setting tolerances to wave aberrations in
249 terms of the MTF. Here, we restrict our discussion
250 to the influence of a focus error on a pupil aperture
251 described by a rectangular function with cutoff spa-
252 tial frequency εΩ. In this case Eq. (18) becomes

R!μ;W" #
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jHQ!μ; 0"j

# sinc2
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"
μ
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----
μ
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----

#$
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253 Following Hopkins, the classical tolerance criteria
254 should be expressed as R!μ;W" ≥ 0.8. However, for
255 describing the methods that extend the depth of

256field beyond the Rayleigh limit, we need a MTF that
257is different from zero inside its passband. For this
258case the requirement should be R!μ;W" > 0. This
259is valid provided that one neglects the presence
260of noise.
261However, in the presence of white noise, it is con-
262venient to consider a detection threshold line, as is
263depicted in Fig. 2. When plotting the MTF, this
264threshold line indicates the values of the MTF that
265are above the noise level. And consequently, here we
266suggest to use Eq. (19) in the following form:

sinc2
!
8!Wε2"

"
μ

2εΩ

#"
1−

----
μ

2εΩ

----

#$
≥ L: (20)

267The letter L denotes the values of the MTF that are
268above the threshold level, with the purpose of reduc-
269ing the impact of white noise. For example, if one as-
270sumes the pupil aperture is reduced from Ω to εΩ,
271with ε > 0.5, and if one is interested at the middle
272of the passband, μ # Ω, then Eq. (21) becomes

sinc2&W!2ε − 1"' ≥ L: (21)

273By setting the white noise level below L # 0.1, the
274condition in Eq. (21) becomes

!2ε−1"W # !2ε−1"
W2;0

λ
≤ 0.9; or W2;0 ≤

9λ
10!2ε−1"

:

(22)

275From Eq. (22) we recognize in an analytical fashion
276that the tolerance to focus error increases as one
277reduces the pupil aperture with a reduction ratio
278ε, such that 0.5 < ε ≤ 1. Of course, one should keep
279in mind that the light throughput decreases as ε2.
280We note that Eq. (20) can be applied for setting focus
281error tolerances for other spatial frequency values.
282Furthermore, Eq. (22) is useful for making compar-
283isons (between proposals for extending the depth
284of field) for a given threshold value L.

2855. Illustrative Examples

286Now, for illustrating our previous formalism, next we
287discuss two simple applications, which are associated
288with the clear pupil aperture, Q!μ" # 1. For the first
289case, we consider a set of consecutive snapshots, at
290random values of W, by using the following acquisi-
291tion function:

g!W" #
"
1
M

# XM−1

m#0

Cmδ!W −Wm": (23)

292Trivially, the Fourier transform of Eq. (23) is
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F5:1 Fig. 5. (Color online) Weighting factors in modulated time
F5:2 photography.
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293 From Eqs. (8) and (24) it is straightforward to obtain
294 the average OTF

hHQ!μ"i #
"
1
M

# XM−1

m#0

CmHQ!μ;Wm": (25)

295 As expected, the average OTF results from superim-
296 posing M out-of-focus versions of the original OTF,
297 using as weighting factors the Cm coefficients. For
298 a few snapshots, the coefficientsCm have a strong im-
299 pact on the average. In Fig. 6, we illustrate the re-
300 sults of our proposal when taking 10 snapshots of
301 two sets of pictures as we change randomly the focus
302 error coefficient. For the first set we use as input a

303Siemens star. For the second set we employ a picture
304of Lena. From left to right, along the two lines of
305Fig. 6, the focus error coefficient changes as follows:
306W # 0.3569, 0.4878, 0.6714, 0.8280, 1.0212, 1.4951,
3071.7578, 1.9653, 2.0391, and 2.8992. The average im-
308age appears at the bottom of Fig. 6: We note that the
309final average image exhibits a “soft focus” effect,
310which was not part of our searching the goals. The
311soft focus effect can be reduced if one uses digital
312algorithms for enhancing the picture.
313Now, related to the experimental results in
314Ref. [27], next we consider a continuous variation
315on the values of W. We show that the proposed ana-
316lytical approach gives some insights on the selection
317of the acquisition function. Let us consider that
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#
rect

"
W
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#
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318The Fourier transform of the above acquisition func-
319tion is
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320Hence, for a clear pupil aperture Q!μ" # 1, we have
321that

hHQ!μ"i #
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&
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"
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"
μ
2Ω

#"
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μ
2Ω

----
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#
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322In Eq. (28) we use the common notation Si!·" for the
323sine integral (SI) function as in Ref. [27]. From
324Eq. (28) one can recognize that the average OTF
325is a nonmonotonic function. In Fig. 7(a) we show a
3263-D display of the MTF for the clear pupil. The
3273-D graph in Fig. 7(b) displays the variations of
328hHQ!μ"i as we change the maximum value of the

F6:1 Fig. 6. Averaging 10 snapshots having focus error coefficients
F6:2 with random values.

F7:1 Fig. 7. (Color online) MTF versus focus error and average MTF versus maximum integration value.
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329 focus error coefficient, which varies from 0.01 to
330 3.0. It is apparent from Fig. 7 that the average
331 OTF does reduce the impact of focus errors. Next,
332 from Eq. (28) we note that, furthermore, for a
333 continuous variation on the values of W, and if one
334 selects a specific spatial frequency value, say
335 μ # σ > 0, the SI function reaches its maximum
336 value at

Wmax #
1

8
%

σ
2Ω

&%
1 − σ

2Ω

& : (29)

337 For example, if we select the spatial frequency at
338 the middle of the passband, σ # Ω, then according
339 to Eq. (29) Wmax # 0.5, which corresponds to
340 W2;0 # λ∕2, which is a feasible task. Hence, from
341 Eq. (28) we claim that when superimposing snap-
342 shots from W # 0 to W # 0.25, at μ # Ω, the MTF
343 reaches the value hHQ!μ"i # 0.25.

344 6. Final Remarks

345 We have proposed a simple optical technique for ex-
346 tending the depth of the field at full pupil aperture by
347 superimposing several out-of-focus snapshots. Since
348 at every snapshot one changes the axial separation
349 between the input plane and the output plane, it
350 was relevant to discuss an optical method for chang-
351 ing the focus error coefficient. We presented the use
352 of an Alvarez–Lohmann pair in an optical processor
353 for controlling the focus error coefficient without
354 modifying either the lateral magnification or the
355 light throughput.
356 We have indicated that if in the Fourier domain the
357 noise is a wide-sense stationary process, then when
358 superimposing snapshots the additive noise aver-
359 ages to a constant value. If, however, in the Fourier
360 domain the noise is white, then we have suggested
361 using Hopkins tolerance formalism for setting
362 threshold values in the MTF.
363 We have reported simple numerical simulations
364 that validate our proposal. Our discussions do not
365 include state-of-the-art techniques for digital record-
366 ing and processing.

367 Appendix A

368 According to Eq. (5) in the main text, at the recording
369 stage, the additive noise is jN!x;W"j2. Its ensemble
370 average is defined as

hjN!x"j2i #
Z

∞

−∞
g!W"jN!x;W"j2dW: (A1)

371 Now, the Fourier spectrum of Eq. (Al) is
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372By employing the autocorrelation theorem of the
373Fourier transform, one can rewrite Eq. (A2) as

P!μ" #
Z

∞

−∞
g!W"

Z
∞

−∞
N
∼
"
ν$

μ
2
;W

#
N
∼

%
"
ν −

μ
2
;W

#
dνdW

#
Z

∞

−∞

.
N
∼
"
ν$

μ
2

#
N
∼
%
"
ν −

μ
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#/
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374We recognize next that the last term in Eq. (A3) is
375the autocorrelation of a stochastic process. As is
376discussed in Ref. [33], for a wide-sense stationary
377process, the autocorrelation of a stochastic process
378is proportional to a Dirac’s delta. That is,
379P!μ" # N0δ!μ", where N0 is a constant. The inverse
380Fourier transform of P!μ" is hjN!x"j2i, which is equal
381to the constant N0.
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1. AU: The OCIS code has been changed from “110.688” to “110.6880”. Please check and confirm

2. AU: Since Tables 1 and 2 are really images, it may be better to label them as figures. Please reorder figures
so all are cited in text in numerical order.

3. AU: Please define PSF.

4. AU: Please provide complete publication information for Ref. [28].

5. AU: Please provide day and month for Ref. 31

1 April 2013 / Vol. 52, No. 10 / APPLIED OPTICS D9


